Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert.
نویسندگان
چکیده
This study explores the photosynthetic microbial colonization of rhyolitic ignimbrites in Lomas de Tilocalar, a hyper-arid region of the Atacama Desert, Chile. Colonization appeared in the form of a green layer a few millimeters beneath the ignimbrite surface. Some ignimbrite rocks revealed two distinct micromorphological areas of identical mineralogical and chemical composition but different textural properties. According to texture, colonization patterns varied in terms of the extension and depth of colonization. The diversity of photosynthetic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) of the 23S rRNA gene and by generating clone libraries of the 16S rRNA gene. We observed a low diversity of photosynthetic microorganisms colonizing the ignimbrite microhabitat. Most rRNA gene sequences recovered greatly resembled those of Chroococcidiopsis hypolith clones from arid deserts. These results point to highly restrictive conditions of the hyper-arid Atacama Desert conditioning the diversity of cyanobacteria, and suggest that microbial colonization and composition patterns might be determined by the microscale physico-chemical properties of the ignimbrite rocks.
منابع مشابه
Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments
Under extreme water deficit, endolithic (inside rock) microbial ecosystems are considered environmental refuges for life in cold and hot deserts, yet their diversity and functional adaptations remain vastly unexplored. The metagenomic analyses of the communities from two rock substrates, calcite and ignimbrite, revealed that they were dominated by Cyanobacteria, Actinobacteria, and Chloroflexi....
متن کاملEndolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts
[1] Soil sulfates are present in arid and hyperarid environments on Earth and have been found to be abundant in soils on Mars. Examination of soil gypsum from the Atacama Desert, Chile, the Mojave Desert, United States, and Al-Jafr Basin, Jordan, revealed endolithic cyanobacteria communities just below the surface of soil gypsum samples. Optical and scanning electron microscope observations of ...
متن کاملEvaluation of Morpho-Physiological Traits Adjustment of Prosopis tamarugo Under Long-Term Groundwater Depletion in the Hyper-Arid Atacama Desert
Citation: Garrido M, Silva H, Franck N, Arenas J and Acevedo E (2018) Evaluation of Morpho-Physiological Traits Adjustment of Prosopis tamarugo Under Long-Term Groundwater Depletion in the Hyper-Arid Atacama Desert. Front. Plant Sci. 9:453. doi: 10.3389/fpls.2018.00453 Evaluation of Morpho-Physiological Traits Adjustment of Prosopis tamarugo Under Long-Term Groundwater Depletion in the Hyper-Ar...
متن کاملMicrobial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy.
The hyper-arid core of the Atacama Desert (Chile) is the driest place on Earth and is considered a close analogue to the extremely arid conditions on the surface of Mars. Microbial life is very rare in soils of this hyper-arid region, and autotrophic micro-organisms are virtually absent. Instead, photosynthetic micro-organisms have successfully colonized the interior of halite crusts, which are...
متن کاملColonization patterns of soil microbial communities in the Atacama Desert
BACKGROUND The Atacama Desert is one of the driest deserts in the world and its soil, with extremely low moisture, organic carbon content, and oxidizing conditions, is considered to be at the dry limit for life. RESULTS Analyses of high throughput DNA sequence data revealed that bacterial communities from six geographic locations in the hyper-arid core and along a North-South moisture gradien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International microbiology : the official journal of the Spanish Society for Microbiology
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2014